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Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the
ground roll �Rayleigh surface waves� is of major concern for it can severely degrade the quality of the
information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-
Loève transform for processing seismic images contaminated with ground roll. In this method, the contami-
nated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the
maximum of a properly defined coherence index. The main advantages of the method are that the ground roll
is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be
automated. The image processing technique described in this study should also be relevant for other applica-
tions where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more
refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomog-
raphy images whose quality is often degraded by coherent noise �speckle�.

DOI: 10.1103/PhysRevE.74.016213 PACS number�s�: 05.45.Tp, 93.85.�q, 91.30.Dk, 43.60.�d

I. INTRODUCTION

Locating oil reservoirs that are economically viable is one
of the main problems in the petroleum industry. This task is
primarily undertaken through seismic exploration, where ex-
plosive sources generate seismic waves whose reflections at
the different geological layers are recorded at the ground or
sea level by acoustic sensors �geophones or hydrophones�.
These seismic signals, which are later processed to reveal
information about possible oil occurrence, are often contami-
nated by noise and properly cleaning the data is therefore of
paramount importance �1�. Of particular concern is noise that
shows coherence in space and time since it often appears
stronger in magnitude than the reflection signal itself. In this
context, the design of efficient filters for coherent noise not
only is of great practical relevance but also remains a scien-
tific challenge for which novel concepts and methods are
required. An additional motivation to tackle this problem is
that the filtering tools developed to treat this kind of noise
may also find relevant applications in other physical prob-
lems where coherent structures embedded in a complex pat-
tern need to identified properly. In particular, we shall argue
below that the technique proposed in the present paper for
processing seismic image can also be used to filter data ac-
quired with other imaging technologies, such as optical co-
herence tomography.

In land seismic surveys, the seismic sources generate vari-
ous type of surface waves which are regarded as noise since
they do not contain information from the deeper subsurface.
This so-called coherent noise represents a serious hurdle in
the processing of the seismic data since it may overwhelm
the reflection signal, thus severely degrading the quality of
the information that can be obtained from the data. A source-
generated noise of particular concern is the ground roll,

which is the main type of coherent noise in land seismic
records and is commonly much stronger in amplitude than
the reflected signals. Ground rolls are surface waves whose
vertical components are Rayleigh-type dispersive waves,
with low frequency and low phase and group velocities.

An example of seismic data contaminated by ground roll
is shown in Fig. 1. �The data shown in this figure were pro-
vided by the Brazilian Petroleum Company PETROBRAS.�
This seismic section consists of land-based data with 96
traces �one for each geophone� and 1001 samples per trace.
A typical trace is shown in Fig. 2 corresponding to geophone
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FIG. 1. A space-time plot of seismic data. The horizontal axis
represents the offset distance and the vertical axis indicates time.
The origin is at the upper left corner, and the maximum offset and
time are 475 m and 1000 ms, respectively. The gray scale is such
that black �white� corresponds to the minimum �maximum� ampli-
tude of the seismic signal. The ground roll noise appears as down-
ward oblique lines.
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58. The image shown in Fig. 1 was created from the 96
traces using a standard imaging technique. The horizontal
axis in this figure corresponds to the offset distance between
source and receiver and the vertical axis represents time,
with the origin located at the upper left corner. The maxi-
mum offset is 475 m �the distance between geophones being
5 m� and the maximum time is 1000 ms. The gray levels in
Fig. 1 change linearly from black to white as the amplitude
of the seismic signal varies from minimum to maximum.
Owing to its dispersive nature, the ground roll appears in a
seismic image as a fanlike structure, which is clearly visible
in Fig. 1.

Standard methods for suppressing ground roll include
one-dimensional high-pass filtering and two-dimensional f
-k filtering �1�. Such “global” filters are based on the elimi-
nation of specific frequencies and have the disadvantage that
they also affect the uncontaminated part of the signal. Re-
cently, “local” filters for suppressing the ground roll have
been proposed using the Karhunen-Loève transform �2,3�
and the wavelet transform �4,5�. The Wiener-Levinson algo-
rithm has also been applied to extract the ground roll �6�.

Filters based on the Karhunen-Loève �KL� transform are
particularly interesting because of the adaptivity of the KL
expansion, meaning that the original signal is decomposed in
a basis that is obtained directly from the empirical data, un-
like Fourier and wavelet transforms which use prescribed
basis functions. The KL transform is a mathematical proce-
dure �also known as proper orthogonal decomposition, em-
pirical orthogonal function decomposition, principal compo-
nent analysis, and singular value decomposition� whereby
any complicated data set can be optimally decomposed into a
finite, and often small, number of modes �called proper or-
thogonal modes, empirical orthogonal functions, principal
components, or eigenimages� which are obtained from the
eigenvectors of the data autocorrelation matrix. In applying
the KL transform to suppress the ground roll, one must first
map the contaminated region of the seismic record into a
horizontal rectangular region. This transformed region is
then decomposed with the KL transform and the first few
principal components are removed to extract the coherent
noise, after which the filtered data is inversely mapped back
into the original seismic section. The advantage of this
method is that the noise is suppressed with negligible distor-
tion of the reflection signals, for only the data within the
selected region are actually processed by the filter. Earlier
versions of the KL filter �2,3� have, however, one serious
drawback, namely, the fact that the region to be filtered must
be picked by hand—a procedure that not only can be labor
intensive but also relies on good judgment of the person
performing the filtering.

In this paper we propose a significant improvement of the
KL filtering method, in which the region to be filtered is
selected automatically as an optimization procedure. We in-
troduce the coherence index �CI�, which gives a measure of
the amount of energy contained in the most coherent modes
for any given region of the data record. The optimal region is
then chosen as that yields the maximum CI, thus ensuring
that our KL filter removes the coherent noise in a most effi-
cient way. Furthermore, introducing a quantitative criterion
for selecting the “best” region to be filtered has the consid-
erable advantage of yielding a largely unsupervised scheme
for demarcating and efficiently suppressing the ground roll.
It is also perhaps worth mentioning that our KL filter for
coherent noise represents an unusual application of the KL
transform, as this technique is normally used to eliminate
noncoherent noisy components of a signal by disregarding
higher-order modes in the KL expansion.

Although our main motivation here concerns the suppres-
sion of coherent noise in seismic data, we wish to emphasize
that our method is applicable to other problems where one
seeks to identify �and eventually remove� coherent structures
embedded in a complex pattern. In particular, our optimized
KL filter yields an image processing technique that is highly
suitable for images where undesired coherent features de-
grade the quality of the information to be extracted from the
image. One such instance is optical coherence tomography
�OCT�, where coherent noise �speckle� degrades the contrast
of images of biological tissues, obscures region boundaries,
and makes feature detection in OCT images a challenging
problem �7�. In this context, our optimized KL filter may be
used as an adaptive automated method for boundary detec-
tion in OCT images. Indeed, it is interesting to notice that
other methods previously used in seismic signal processing,
such as deconvolution techniques �8�, have been successfully
put to use in the enhancement of OCT images. Hence it is
only natural to try to apply our method to this imaging tech-
nology. �We are currently working on this problem with OCT
images of biological tissues �9� provided by Professor A. S.
L. Gomes from our own department.�

The paper is organized as follows. In Sec. II we define the
Karhunen-Loève transform and describe its main properties.
In Sec. III we present the KL filter and an optimization pro-
cedure to select the noise-contaminated region to be parsed
through the filter. The results of our optimized filter when
applied to the data shown in Fig. 1 are presented in Sec. IV.
Our main conclusions are summarized in Sec. V.

II. THE KARHUNEN-LOÈVE TRANSFORM

Consider a multichannel seismic data consisting of m
traces with n samples per trace represented by an m�n ma-
trix A, so that the element Aij of the data matrix corresponds
to the amplitude registered at the ith geophone at time j. For
definiteness, let us assume that m�n, as is usually the case.
We also assume for simplicity that the matrix A has full rank,
i.e., r=m, where r denotes the rank of A. Letting the vectors
x�i and y� j denote the elements of the ith row and the jth
column of A, respectively, we can write

FIG. 2. Seismic signal recorded by a single geophone �trace 58�.
The amplitude is in arbitrary units and time in milliseconds.
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A = �y�1 y�2 ¯ y�n� =�
x�1

x�2

]

x�m

� . �1�

With the above notation we have

Aij = xij = yji, �2�

where aij denotes the jth element of the vector a� i. �To avoid
risk of confusion matrix elements will always be denoted by
capital letters, so that a lower-case symbol with two sub-
scripts indicates vector elements.�

Next consider the following m�m symmetric matrix:

� � AAt, �3�

where the superscript t denotes matrix transposition. It is a
well-known fact from linear algebra that matrices of the form
�3�, also called covariance matrices, are positive definite
�10�. Let us then arrange the eigenvalues �i of � in nona-
scending order, i.e., �1��2� ¯ ��m�0, and let u� i be the
corresponding �normalized� eigenvectors.

The Karhunen-Loève transform of the data matrix A is
defined as the m�n matrix 	 given by

	 = UtA , �4�

where the columns of the matrix U are the eigenvectors of �:

U = �u�1 u�2 ¯ u�m� . �5�

The original data can be recovered from the KL transform 	
by the inverse relation

A = U	 . �6�

We refer to this equation as the KL expansion of the data
matrix A. To render such an expansion more explicit let us
denote by the 
� i, i=1, . . . ,m, the elements of the ith row of
the KL matrix 	, that is,

	 =�

�1


�2

]


�m

� . �7�

Then �6� can be written as

A = �
i=1

m

Ai = �
i=1

m

u� i
� i, �8�

where matrix multiplication is implied between the column
vector u� i and the row vector 
� i. The eigenvectors u� i are
called empirical eigenvectors, proper orthogonal modes, or
KL modes, and we shall refer to the matrix Ai=u� i
� i as the ith
eigenimage of A. �This differs from the usual definition of
eigenimages by a factor of 	�i but such a distinction is not
relevant here.� In the context of principal component analy-
sis, the eigenvectors u� i define the principal components
whereas the row vectors 
� i of the KL transform 	 are said to
contain the scores of the ith principal component.

It is usual to define the energy E of the data in matrix A as
the sum of all eigenvalues of the matrix �,

E = �
i=i

m

�i. �9�

It then follows that �i can be interpreted as the energy cap-
tured by the ith empirical eigenvector u� i �11�, so that the
relative energy Ei contained in the ith KL mode is given by

Ei =
�i

�
i=i

m

�i

. �10�

We note furthermore that since � is a covariancelike matrix
its eigenvalues �i can also be interpreted as the variance of
the respective principal component u� i. We thus say that the
higher �i, the more coherent the KL mode u� i is. In this con-
text, the most energetic modes are identified with the most
coherent ones, and vice versa.

An important property of the KL expansion is that it is
“optimal” in the following sense: if we form the matrix 	k
by keeping the first k rows of 	 and setting the remaining
m−k rows to zero, then the matrix Ak given by

Ak = U	k �11�

is the best approximation to A by a matrix of rank k�m in
the Frobenius norm �the square root of the sum of the
squares of all matrix elements� �11�. This optimality property
of the KL expansion lies at the heart of its applications in
dimensionality reduction and data compression, for it allows
to approximate the original data A by a smaller matrix Ak
with minimum loss of information �in the above sense�. An-
other interpretation of relation �11� is that it gives a low-pass
filter �12�, for in this case only the first k KL modes are
retained in the filtered data Ak.

On the other hand, if the relevant signal in the application
at hand is contaminated with coherent noise, as is the case of
the ground roll in seismic data, one can use the KL transform
to remove efficiently such noise by constructing a high-pass
filter. Indeed, if we form the matrix 	k� by setting to zero the
first k rows of 	 and keeping the remaining ones, then the
matrix A�k given by

Ak� = U	k� �12�

is a filtered version of A where the first k “most coherent”
modes have been removed. However, if the noise is localized
in space and time it is then best to apply the filter only to the
contaminated part of the signal. In previous versions of the
KL filter the choice of the region to be parsed through the
filter is made a priori, according to the best judgment of the
person carrying out the filtering, thus lending a considerable
degree of subjectivity to the process. In the next section, we
will show how one can use the KL expansion to implement
an automated filter where the undesirable coherent structure
can be optimally identified and removed.

OPTIMIZED SUPPRESSION OF COHERENT NOISE¼ PHYSICAL REVIEW E 74, 016213 �2006�

016213-3



III. THE OPTIMIZED KL FILTER

As already mentioned, owing to its dispersive nature the
ground-roll noise appears in a seismic image as a typical
fanlike coherent structure. This space-time localization of the
ground roll allows us to apply a sort of surgical procedure to
suppress the noise, leaving intact the uncontaminated region.
To do that, we first pick lines to demarcate the start and end
of the ground roll and, if necessary, intermediate lines to
demarcate different wavetrains, as indicated schematically in
Fig. 3. In this figure we have for simplicity used straight
lines to demarcate the sectors but more general alignment
functions, such as segmented straight lines, can also be cho-
sen �2,3�. To make our discussion as general as possible, let
us assume that we have a set of N parameters 
�i�, i
=1, . . . ,N, describing our alignment functions. For instance,
in Fig. 3 the parameters 
�i� would correspond to the coeffi-
cients of the straight lines defining each sector.

Once the region contaminated by the ground roll has been
demarcated, we map each sector onto a horizontal rectangu-
lar region by shifting and stretching along the time axis; see
Fig. 3. The data points between the top and bottom lines in
each sector are mapped into the corresponding new rectan-
gular domain, with the mapping being carried out via a cubic
convolution interpolation technique �13�. After this align-
ment procedure the ground-roll events will become approxi-
mately horizontal, favoring its decomposition in a smaller
space. Since any given transformed sector has a rectangular
shape it can be represented by a matrix, which in turn can be
decomposed in empirical orthogonal modes �eigenimages�
using the KL transform. The first few modes, which contain
most of the ground roll, are then subtracted to extract the
coherent noise. The resulting data for each transformed sec-
tor are finally subjected to the corresponding inverse map-
ping to compensate for the original forward mapping. This
leaves the uncontaminated data �lying outside the demar-
cated sectors� unaffected by the whole filtering procedure.

The KL filter described above has indeed shown good
performance in suppressing source-generated noise from
seismic data �2,3�. The method has, however, the drawback

that the region to be filtered must be picked by hand, which
renders the analysis somewhat subjective. In order to over-
come this difficulty, it would be desirable to have a quanti-
tative criterion based on which one could decide what is the
best choice for the parameters 
�i� describing the alignment
functions. In what follows, we propose an optimization pro-
cedure whereby the region to be filtered can be selected au-
tomatically, once the generic form of the alignment functions
is prescribed.

Suppose we have chosen l sectors to demarcate the differ-
ent wave trains in the contaminated region of the original
data, and let 
�1 , . . . ,�N� be the set of parameters character-
izing the respective alignment functions that define these

sectors. Let us denote by Ãk, k=1, . . . , l, the matrix represent-
ing the kth transformed sector obtained from the linear map-
ping of the respective original sector, as discussed above. For

each transformed sector Ãk we then compute its KL trans-
form and calculate the coherence index Ck for this sector,
defined as the relative energy contained in its first KL mode:

Ck =
�1

k

�
i=1

rk

�i
k

, �13�

where �i
k are the eigenvalues of the correlation matrix �̃k

= ÃkÃk
t and rk is the rank of Ãk. As defined above, Ck repre-

sents the relative weight of the most coherent mode in the

KL expansion of the transformed sector Ãk. �A quantity
analogous to our CI is known in the oceanography literature
as the similarity index �14�.�

Next we introduce an overall coherence index
C��1 , . . . ,�N� for the entire demarcated region, defined as the
average coherence index of all sectors:

C��1, . . . ,�N� =
1

l
�
k=1

l

Ck. �14�

FIG. 3. Schematic diagram for demarcating
the ground roll on a seismic section and the cor-
responding rectangular sectors obtained by apply-
ing a linear map.
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As the name suggests, the coherence index is a measure of
the amount of coherent energy contained in the chosen de-
marcated region given by the parameters 
�i�i=1

N . Thus, the
higher C the larger the energy contained in the most coherent
modes in that region. For the purpose of filtering coherent
noise it is therefore mostly favorable to pick the region with
the largest possible C. We thus propose the following crite-
rion to select the optimal region to be filtered: vary the pa-
rameters 
�i� over some appropriate range and then choose
the values �i

* that maximize the coherence index C, that is,

C��1
*, . . . ,�N

* � = max

�i�

�C��1, . . . ,�N�� . �15�

Once we have selected the optimal region, given by the pa-
rameters 
�i

*�i=1
N , we then simply apply the KL filter to this

region as already discussed: we remove the first few eigen-
images from each transformed sector and inversely map the
data back into the original sectors, so as to obtain the final
filtered image. In the next section we will apply our opti-
mized KL filtering procedure to the seismic data shown in
Fig. 1.

IV. RESULTS

Here we illustrate how our optimized KL filter works by
applying it to the seismic data shown in Fig. 1. In this case,
it suffices to choose only one sector to demarcate the entire

region contaminated by the ground roll. This means that we
have to prescribe only two alignment functions, correspond-
ing to the uppermost and lowermost straight lines �lines AB
and CD, respectively� in Fig. 3. To reduce further the number
of free parameters in the problem, let us keep the leftmost
point of the upper line �point A in Fig. 3� fixed to the origin,
so that the coordinates �iA , jA� of point A are set to �0, 0�,
while allowing the point B to move freely up or down within
certain range; see below. Similarly, we shall keep the right-
most point of the lower line �point C in Fig. 3� pinned at a
point �iC , jC�, where iC=95 and jC is chosen so that the entire
ground-roll wave train is above point C. The other end point
of the lower demarcation line �point D in Fig. 3� is allowed
to vary freely. With such restrictions, we are left with only
two free parameters, namely, the angles �1 and �2 that the
upper and lower demarcation lines make with the horizontal
axis. So reducing the dimensionality of our parameter space
allows us to visualize the coherence index C��1 ,�2� as a
two-dimensional �2D� surface. For the case in hand, it is
more convenient, however, to express CI not as a function of
the angles �1 and �2 but in terms of two other new param-
eters introduced below.

Let the coordinates of point B, which defines the right end
point of the upper demarcation line in Fig. 3, be given by
�iB , jB�, where iB=95. In our optimization procedure we let
point B move along the right edge of the seismic section by

FIG. 4. The coherence index as a function of
the indices k and l that define the demarcation
lines; see text.
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allowing the coordinate jB to vary from a minimum value
jBmin

to a maximum value jBmax
, so that we can write

jB = jBmin
+ k�B, k = 0,1, . . . ,NB, �16�

where NB is the number of intermediate sampling points be-
tween jBmin

and jBmax
, and �B= �jBmax

− jBmin
� /NB. Similarly, for

the coordinates �iD , jD� of point D in Fig. 3, which is the
moving end point of the lower straight line, we have iD=0
and

jD = jDmin
+ l�D, l = 0,1, . . . ,ND, �17�

where ND is the number of sampling points between jDmin
and

jDmax
, and �D= �jDmax

− jDmin
� /ND.

For each choice of k and l in Eqs. �16� and �17�, we apply
the procedure described in the previous section and obtain
the coherence index C�k , l� of the corresponding region. In
Fig. 4 we show the energy surface C�k , l�, for the case in
which jBmin

=280, jBmax
=600, jC=864, jDmin

=0, jDmax
=576,

and NB=ND=64. We see in this figure that C possesses a
sharp peak, thus showing that this criterion is indeed quite
discriminating with respect to the positioning of the lines
demarcating the region contaminated by the ground roll. The
global maximum of C in Fig. 4 is located at k=27 and l
=45, and in Fig. 5�a� we show the transformed sector ob-
tained from the linear mapping of this optimal region. In this
figure one clearly sees that the ground-roll wave trains ap-
pear mostly as horizontal events. In Fig. 5�b� we present the
first eigenimage of the data shown in Fig. 5�a�, which corre-

FIG. 5. �a� The selected region in the new domain; �b� its first eigenimage; �c� the second eigenimage; and �d� the result after subtracting
the first eigenimage.
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sponds to about 33% of the total energy of the image in Fig.
5�a�, as can be seen in Fig. 6 where we plot the relative
energy Ei captured by the first ten eigenimages. The second
eigenimage, shown in Fig. 5�c�, captures about 10% of the
total energy, with each successively higher mode contribut-
ing successively less to the total energy; see Fig. 6. In Fig.
5�d� we give the result of removing the first KL mode �Fig.
5�b�� from Fig. 5�a�. It is clear in Fig. 5�d� that by removing
only the first eigenimage the main horizontal events �corre-
sponding to the ground roll� have already been greatly sup-
pressed.

Performing the inverse mapping of the image shown in
Fig. 5�c� yields the data seen in the region between the two
white lines in Fig. 7�a�, which shows the final filtered image
for this case �i.e., after removing the first KL mode from the
transformed region�. We see that the ground roll inside the
demarcated region in Fig. 7�a� has been considerably sup-

pressed, while the uncontaminated signal �lying outside the
marked region� has not been affected at all by the filtering
procedure. If one wishes to filter further the ground-roll
noise one may subtract successively higher modes. For ex-
ample, in Fig. 7�b� we show the filtered image after we also
subtract the second eigenimage. One sees that there is some
minor improvement, but removing additional modes is not
recommended for it starts to degrade the relevant signal as
well.

V. CONCLUSIONS

An optimized filter based on the Karhunen-Loève trans-
form has been constructed for processing seismic data con-
taminated with coherent noise �ground roll�. A great advan-
tage of the KL filter lies in its local nature, meaning that only
the contaminated region of the seismic record is processed
by the filter, which allows the ground roll to be removed
without distorting most of the reflection signal. Another ad-
vantage is that it is an adaptive method in the sense the
signal is decomposed in an empirical basis obtained from the
data themselves. We have improved considerably the KL fil-
ter by introducing an optimization procedure whereby the
ground roll region is selected so as to maximize an appropri-
ately defined coherence index. We emphasize that our
method requires as input only the generic alignment func-
tions to be used in the optimization procedure as well as the
number of eigenimages to be removed from the selected re-
gion. These may vary depending on the specific application
at hand. However, once these choices are made, the filtering
task can proceed in the computer in an automated way.

Although our main motivation here has been suppressing
coherent noise from seismic data, our method is by no means

FIG. 6. The relative energy of the first ten KL modes of the
region shown in Fig. 5�a�.

FIG. 7. �a� The filtered seismic section after removing the first eigenimage of the selected region shown in Fig. 5�a�. In �b� we show the
result after removing the first two eigenimages.
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restricted to geophysical applications. In fact, the KL filter
described in this paper represents an image processing tech-
nique that is quite suitable to process images where coherent
noise degrades image quality. One such case is the image-
degrading effects of speckle in optical coherence tomogra-
phy. We are currently testing our KL filter as a method for
enhancing OCT images and hope to report on this interesting
problem in future presentations.
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